Edge Functions

Running AI Models

How to run AI models in Edge Functions.

Supabase Edge Runtime has a built-in API for running AI models. You can use this API to generate embeddings, build conversational workflows, and do other AI related tasks in your Edge Functions.

Setup

There are no external dependencies or packages to install to enable the API.

You can create a new inference session by doing:

const model = new Supabase.ai.Session('model-name')

Running a model inference

Once the session is instantiated, you can call it with inputs to perform inferences. Depending on the model you run, you may need to provide different options (discussed below).

const output = await model.run(input, options)

How to generate text embeddings

Now let's see how to write an Edge Function using the Supabase.ai API to generate text embeddings. Currently, Supabase.ai API only supports the gte-small model.

const model = new Supabase.ai.Session('gte-small')

Deno.serve(async (req: Request) => {
const params = new URL(req.url).searchParams
const input = params.get('input')
const output = await model.run(input, { mean_pool: true, normalize: true })
return new Response(JSON.stringify(output), {
headers: {
'Content-Type': 'application/json',
Connection: 'keep-alive',
},
})
})

Using Large Language Models

Inference via larger models is supported via Ollama. In the first iteration, you can use it with a self-managed Ollama server. We are progressively rolling out support for the hosted solution. To sign up for early access, fill up this form.

Running locally

  1. Install Ollama and pull the Mistral model

    ollama pull mistral
  2. Run the Ollama server locally

    ollama serve
  3. Set a function secret called AI_INFERENCE_API_HOST to point to the Ollama server

    echo "AI_INFERENCE_API_HOST=http://host.docker.internal:11434/api/generate" >> supabase/functions/.env
  4. Create a new function with the following code

    supabase functions new ollama-test
    /// <reference types="https://esm.sh/@supabase/functions-js/src/edge-runtime.d.ts" />
    const session = new Supabase.ai.Session('mistral')

    Deno.serve(async (req: Request) => {
    const params = new URL(req.url).searchParams
    const prompt = params.get('prompt') ?? ''

    // Get the output as a stream
    const output = await session.run(prompt, { stream: true })

    const headers = new Headers({
    'Content-Type': 'text/event-stream',
    Connection: 'keep-alive',
    })

    // Create a stream
    const stream = new ReadableStream({
    async start(controller) {
    const encoder = new TextEncoder()

    try {
    for await (const chunk of output) {
    controller.enqueue(encoder.encode(chunk.response ?? ''))
    }
    } catch (err) {
    console.error('Stream error:', err)
    } finally {
    controller.close()
    }
    },
    })

    // Return the stream to the user
    return new Response(stream, {
    headers,
    })
    })
  5. Serve the function

supabase functions serve --env-file supabase/functions/.env
  1. Execute the function

    curl --get "http://localhost:54321/functions/v1/ollama-test" \
    --data-urlencode "prompt=write a short rap song about Supabase, the Postgres Developer platform, as sung by Nicki Minaj" \
    -H "Authorization: $ANON_KEY"

Deploying to production

Once the function is working locally, it's time to deploy to production.

  1. Deploy a Ollama server and set a function secret called AI_INFERENCE_API_HOST to point to the deployed Ollama server

    supabase secrets set AI_INFERENCE_API_HOST=https://path-to-your-ollama-server/
  2. Deploy the Supabase function

    supabase functions deploy ollama-test
  3. Execute the function

    curl --get "https://project-ref.supabase.co/functions/v1/ollama-test" \
    --data-urlencode "prompt=write a short rap song about Supabase, the Postgres Developer platform, as sung by Nicki Minaj" \
    -H "Authorization: $ANON_KEY"

As demonstrated in the video above, running Ollama locally is typically slower than running it in on a server with dedicated GPUs. We are collaborating with the Ollama team to improve local performance.

In the future, a hosted Ollama API, will be provided as part of the Supabase platform. Supabase will scale and manage the API and GPUs for you. To sign up for early access, fill up this form.